Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Laryngoscope ; 132(11): 2089-2095, 2022 11.
Artigo em Inglês | MEDLINE | ID: covidwho-2288315

RESUMO

OBJECTIVES/HYPOTHESIS: To determine the effect of povidone-iodine (PVP-I) nasal sprays on nasopharyngeal (NP) viral load as assessed by cycle threshold (Ct) on quantitative polymerase chain reaction (qPCR) of SARS-CoV-2 in outpatients. STUDY DESIGN: Three arm, triple blinded, randomized, placebo-controlled clinical trial. METHODS: Participants were randomized within 5 days of testing positive for COVID-19 to receive nasal sprays containing placebo (0.9% saline), 0.5% PVP-I, or 2.0% PVP-I. NP swabs for qPCR analysis were taken at baseline, 1-hour post-PVP-I spray (two sprays/nostril), and 3 days post-PVP-I spray (20 sprays/nostril). Symptom and adverse event questionnaires were completed at baseline, day 3, and day 5. University of Pennsylvania Smell Identification Tests (UPSIT) were completed at baseline and day 30. RESULTS: Mean Ct values increased over time in all groups, indicating declining viral loads, with no statistically significant difference noted in the rate of change between placebo and PVP-I groups. The 2.0% PVP-I group showed statistically significant improvement in all symptom categories; however, it also reported a high rate of nasal burning. Olfaction via UPSIT showed improvement by at least one category in all groups. There were no hospitalizations or mortalities within 30 days of study enrollment. CONCLUSIONS: Saline and low concentration PVP-I nasal sprays are well tolerated. Similar reductions in SARS-CoV-2 NP viral load were seen over time in all groups. All treatment groups showed improvement in olfaction over 30 days. These data suggest that dilute versions of PVP-I nasal spray are safe for topical use in the nasal cavity, but that PVP-I does not demonstrate virucidal activity in COVID-19 positive outpatients. LEVEL OF EVIDENCE: 2 Laryngoscope, 132:2089-2095, 2022.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Sprays Nasais , Povidona-Iodo/uso terapêutico , Solução Salina , Carga Viral
2.
Nat Microbiol ; 8(1): 121-134, 2023 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2185891

RESUMO

The coronavirus SARS-CoV-2 causes the severe disease COVID-19. SARS-CoV-2 infection is initiated by interaction of the viral spike protein and host receptor angiotensin-converting enzyme 2 (ACE2). We report an improved bright and reversible fluorogenic reporter, named SURF (split UnaG-based reversible and fluorogenic protein-protein interaction reporter), that we apply to monitor real-time interactions between spike and ACE2 in living cells. SURF has a large dynamic range with a dark-to-bright fluorescence signal that requires no exogenous cofactors. Utilizing this reporter, we carried out a high-throughput screening of small-molecule libraries. We identified three natural compounds that block replication of SARS-CoV-2 in both Vero cells and human primary nasal and bronchial epithelial cells. Cell biological and biochemical experiments validated all three compounds and showed that they block the early stages of viral infection. Two of the inhibitors, bruceine A and gamabufotalin, were also found to block replication of the Delta and Omicron variants of SARS-CoV-2. Both bruceine A and gamabufotalin exhibited potent antiviral activity in K18-hACE2 and wild-type C57BL6/J mice, as evidenced by reduced viral titres in the lung and brain, and protection from alveolar and peribronchial inflammation in the lung, thereby limiting disease progression. We propose that our fluorescent assay can be applied to identify antiviral compounds with potential as therapeutic treatment for COVID-19 and other respiratory diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Camundongos , Humanos , Animais , SARS-CoV-2/metabolismo , Células Vero , Enzima de Conversão de Angiotensina 2 , Peptidil Dipeptidase A/metabolismo , Antivirais/farmacologia
3.
Cell ; 186(1): 112-130.e20, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2130296

RESUMO

How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.


Assuntos
COVID-19 , Sistema Respiratório , SARS-CoV-2 , Humanos , Cílios/fisiologia , Cílios/virologia , COVID-19/virologia , Sistema Respiratório/citologia , Sistema Respiratório/virologia , SARS-CoV-2/fisiologia , Microvilosidades/fisiologia , Microvilosidades/virologia , Internalização do Vírus , Células Epiteliais/fisiologia , Células Epiteliais/virologia
4.
Cell Rep Med ; 2(10): 100421, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: covidwho-1440413

RESUMO

Understanding viral tropism is an essential step toward reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, decreasing mortality from coronavirus disease 2019 (COVID-19) and limiting opportunities for mutant strains to arise. Currently, little is known about the extent to which distinct tissue sites in the human head and neck region and proximal respiratory tract selectively permit SARS-CoV-2 infection and replication. In this translational study, we discover key variabilities in expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), essential SARS-CoV-2 entry factors, among the mucosal tissues of the human proximal airways. We show that SARS-CoV-2 infection is present in all examined head and neck tissues, with a notable tropism for the nasal cavity and tracheal mucosa. Finally, we uncover an association between smoking and higher SARS-CoV-2 viral infection in the human proximal airway, which may explain the increased susceptibility of smokers to developing severe COVID-19. This is at least partially explained by differences in interferon (IFN)-ß1 levels between smokers and non-smokers.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/transmissão , Mucosa Respiratória/metabolismo , Serina Endopeptidases/genética , Fumantes , Tropismo Viral , Idoso , Idoso de 80 Anos ou mais , COVID-19/genética , COVID-19/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/metabolismo , SARS-CoV-2/fisiologia , Traqueia/metabolismo
5.
PLoS Pathog ; 17(9): e1009898, 2021 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1394564

RESUMO

The respiratory disease COVID-19 is caused by the coronavirus SARS-CoV-2. Here we report the discovery of ethacridine as a potent drug against SARS-CoV-2 (EC50 ~ 0.08 µM). Ethacridine was identified via high-throughput screening of an FDA-approved drug library in living cells using a fluorescence assay. Plaque assays, RT-PCR and immunofluorescence imaging at various stages of viral infection demonstrate that the main mode of action of ethacridine is through inactivation of viral particles, preventing their binding to the host cells. Consistently, ethacridine is effective in various cell types, including primary human nasal epithelial cells that are cultured in an air-liquid interface. Taken together, our work identifies a promising, potent, and new use of the old drug via a distinct mode of action for inhibiting SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Etacridina/farmacologia , Inibidores de Proteases/farmacologia , Ativação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Proteases 3C de Coronavírus/antagonistas & inibidores , Genes Reporter , Proteínas de Fluorescência Verde/genética , Humanos , Células Vero , Vírion/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
6.
Cell Metab ; 33(8): 1565-1576.e5, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1343160

RESUMO

Emerging evidence points toward an intricate relationship between the pandemic of coronavirus disease 2019 (COVID-19) and diabetes. While preexisting diabetes is associated with severe COVID-19, it is unclear whether COVID-19 severity is a cause or consequence of diabetes. To mechanistically link COVID-19 to diabetes, we tested whether insulin-producing pancreatic ß cells can be infected by SARS-CoV-2 and cause ß cell depletion. We found that the SARS-CoV-2 receptor, ACE2, and related entry factors (TMPRSS2, NRP1, and TRFC) are expressed in ß cells, with selectively high expression of NRP1. We discovered that SARS-CoV-2 infects human pancreatic ß cells in patients who succumbed to COVID-19 and selectively infects human islet ß cells in vitro. We demonstrated that SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion and induces ß cell apoptosis, each rescued by NRP1 inhibition. Phosphoproteomic pathway analysis of infected islets indicates apoptotic ß cell signaling, similar to that observed in type 1 diabetes (T1D). In summary, our study shows SARS-CoV-2 can directly induce ß cell killing.


Assuntos
COVID-19/virologia , Diabetes Mellitus/virologia , Células Secretoras de Insulina/virologia , Neuropilina-1/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2/patogenicidade , Internalização do Vírus , Células A549 , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Antígenos CD/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , COVID-19/complicações , COVID-19/diagnóstico , Estudos de Casos e Controles , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores da Transferrina/metabolismo , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
bioRxiv ; 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: covidwho-915982

RESUMO

SARS-CoV-2 is the coronavirus that causes the respiratory disease COVID-19, which is now the third-leading cause of death in the United States. The FDA has recently approved remdesivir, an inhibitor of SARS-CoV-2 replication, to treat COVID-19, though recent data from the WHO shows little to no benefit with use of this anti-viral agent. Here we report the discovery of ethacridine, a safe antiseptic use in humans, as a potent drug for use against SARS-CoV-2 (EC50 ~ 0.08 µM). Ethacridine was identified via high-throughput screening of an FDA-approved drug library in living cells using a fluorescent assay. Interestingly, the main mode of action of ethacridine is through inactivation of viral particles, preventing their binding to the host cells. Indeed, ethacridine is effective in various cell types, including primary human nasal epithelial cells. Taken together, these data identify a promising, potent, and new use of the old drug possessing a distinct mode of action for inhibiting SARS-CoV-2.

8.
Nat Commun ; 11(1): 5453, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: covidwho-894390

RESUMO

The coronavirus SARS-CoV-2 is the causative agent of the ongoing severe acute respiratory disease pandemic COVID-19. Tissue and cellular tropism is one key to understanding the pathogenesis of SARS-CoV-2. We investigate the expression and subcellular localization of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), within the upper (nasal) and lower (pulmonary) respiratory tracts of human donors using a diverse panel of banked tissues. Here, we report our discovery that the ACE2 receptor protein robustly localizes within the motile cilia of airway epithelial cells, which likely represents the initial or early subcellular site of SARS-CoV-2 viral entry during host respiratory transmission. We further determine whether ciliary ACE2 expression in the upper airway is influenced by patient demographics, clinical characteristics, comorbidities, or medication use, and show the first mechanistic evidence that the use of angiotensin-converting enzyme inhibitors (ACEI) or angiotensin II receptor blockers (ARBs) does not increase susceptibility to SARS-CoV-2 infection through enhancing the expression of ciliary ACE2 receptor. These findings are crucial to our understanding of the transmission of SARS-CoV-2 for prevention and control of this virulent pathogen.


Assuntos
Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Infecções por Coronavirus/patologia , Expressão Gênica/efeitos dos fármacos , Peptidil Dipeptidase A/genética , Pneumonia Viral/patologia , Sistema Respiratório/patologia , Fatores Etários , Enzima de Conversão de Angiotensina 2 , COVID-19 , Cílios/metabolismo , Infecções por Coronavirus/virologia , Células Endoteliais , Células Caliciformes/metabolismo , Humanos , Pulmão/patologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Fatores Sexuais , Sinusite/metabolismo , Fumar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA